Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Geroscience ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727872

RESUMO

Age-related cerebromicrovascular changes, including blood-brain barrier (BBB) disruption and microvascular rarefaction, play a significant role in the development of vascular cognitive impairment (VCI) and neurodegenerative diseases. Utilizing the unique model of heterochronic parabiosis, which involves surgically joining young and old animals, we investigated the influence of systemic factors on these vascular changes. Our study employed heterochronic parabiosis to explore the effects of young and aged systemic environments on cerebromicrovascular aging in mice. We evaluated microvascular density and BBB integrity in parabiotic pairs equipped with chronic cranial windows, using intravital two-photon imaging techniques. Our results indicate that short-term exposure to young systemic factors leads to both functional and structural rejuvenation of cerebral microcirculation. Notably, we observed a marked decrease in capillary density and an increase in BBB permeability to fluorescent tracers in the cortices of aged mice undergoing isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis), compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, aged heterochronic parabionts (A-(Y)) exposed to young blood exhibited a significant increase in cortical capillary density and restoration of BBB integrity. In contrast, young mice exposed to old blood from aged parabionts (Y-(A)) rapidly developed cerebromicrovascular aging traits, evidenced by reduced capillary density and increased BBB permeability. These findings underscore the profound impact of systemic factors in regulating cerebromicrovascular aging. The rejuvenation observed in the endothelium, following exposure to young blood, suggests the existence of anti-geronic elements that counteract microvascular aging. Conversely, pro-geronic factors in aged blood appear to accelerate cerebromicrovascular aging. Further research is needed to assess whether the rejuvenating effects of young blood factors could extend to other age-related cerebromicrovascular pathologies, such as microvascular amyloid deposition and increased microvascular fragility.

2.
Nutrients ; 16(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612986

RESUMO

High-fat diets (HFDs) have pervaded modern dietary habits, characterized by their excessive saturated fat content and low nutritional value. Epidemiological studies have compellingly linked HFD consumption to obesity and the development of type 2 diabetes mellitus. Moreover, the synergistic interplay of HFD, obesity, and diabetes expedites the aging process and prematurely fosters age-related diseases. However, the underlying mechanisms driving these associations remain enigmatic. One of the most conspicuous hallmarks of aging is the accumulation of highly inflammatory senescent cells, with mounting evidence implicating increased cellular senescence in the pathogenesis of age-related diseases. Our hypothesis posits that HFD consumption amplifies senescence burden across multiple organs. To scrutinize this hypothesis, we subjected mice to a 6-month HFD regimen, assessing senescence biomarker expression in the liver, white adipose tissue, and the brain. Aging is intrinsically linked to impaired cellular stress resilience, driven by dysfunction in Nrf2-mediated cytoprotective pathways that safeguard cells against oxidative stress-induced senescence. To ascertain whether Nrf2-mediated pathways shield against senescence induction in response to HFD consumption, we explored senescence burden in a novel model of aging: Nrf2-deficient (Nrf2+/-) mice, emulating the aging phenotype. Our initial findings unveiled significant Nrf2 dysfunction in Nrf2+/- mice, mirroring aging-related alterations. HFD led to substantial obesity, hyperglycemia, and impaired insulin sensitivity in both Nrf2+/- and Nrf2+/+ mice. In control mice, HFD primarily heightened senescence burden in white adipose tissue, evidenced by increased Cdkn2a senescence biomarker expression. In Nrf2+/- mice, HFD elicited a significant surge in senescence burden across the liver, white adipose tissue, and the brain. We postulate that HFD-induced augmentation of senescence burden may be a pivotal contributor to accelerated organismal aging and the premature onset of age-related diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Resiliência Psicológica , Animais , Camundongos , Fator 2 Relacionado a NF-E2/genética , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/etiologia , Senescência Celular , Envelhecimento , Obesidade/etiologia , Biomarcadores
3.
Geroscience ; 46(3): 3481-3501, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38388918

RESUMO

Cerebrovascular fragility and cerebral microhemorrhages (CMH) contribute to age-related cognitive impairment, mobility defects, and vascular cognitive impairment and dementia, impairing healthspan and reducing quality of life in the elderly. Insulin-like growth factor 1 (IGF-1) is a key vasoprotective growth factor that is reduced during aging. Circulating IGF-1 deficiency leads to the development of CMH and other signs of cerebrovascular dysfunction. Here our goal was to understand the contribution of IGF-1 signaling on vascular smooth muscle cells (VSMCs) to the development of CMH and associated gait defects. We used an inducible VSMC-specific promoter and an IGF-1 receptor (Igf1r) floxed mouse line (Myh11-CreERT2 Igf1rf/f) to knockdown Igf1r. Angiotensin II in combination with L-NAME-induced hypertension was used to elicit CMH. We observed that VSMC-specific Igf1r knockdown mice had accelerated development of CMH, and subsequent associated gait irregularities. These phenotypes were accompanied by upregulation of a cluster of pro-inflammatory genes associated with VSMC maladaptation. Collectively our findings support an essential role for VSMCs as a target for the vasoprotective effects of IGF-1, and suggest that VSMC dysfunction in aging may contribute to the development of CMH.


Assuntos
Hipertensão , Músculo Liso Vascular , Receptor IGF Tipo 1 , Idoso , Animais , Humanos , Camundongos , Marcha , Hipertensão/genética , Hipertensão/complicações , Fator de Crescimento Insulin-Like I/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Receptor IGF Tipo 1/genética , Transtornos Neurológicos da Marcha/genética
4.
J Biophotonics ; 17(3): e202300409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176434

RESUMO

Cerebral microvascular health is a key biomarker for the study of natural aging and associated neurological diseases. Our aim is to quantify aging-associated change of microvasculature at diverse dimensions in mice brain. We used optical coherence tomography (OCT) and two-photon microscopy (TPM) to obtain nonaged and aged C57BL/6J mice cerebral microvascular images in vivo. Our results indicated that artery & vein, arteriole & venule, and capillary from nonaged and aged mice showed significant differences in density, diameter, complexity, perimeter, and tortuosity. OCT angiography and TPM provided the comprehensive quantification for arteriole and venule via compensating the limitation of each modality alone. We further demonstrated that arteriole and venule at specific dimensions exhibited negative correlations in most quantification analyses between nonaged and aged mice, which indicated that TPM and OCT were able to offer complementary vascular information to study the change of cerebral blood vessels in aging.


Assuntos
Microscopia , Tomografia de Coerência Óptica , Animais , Camundongos , Tomografia de Coerência Óptica/métodos , Camundongos Endogâmicos C57BL , Microvasos/diagnóstico por imagem , Envelhecimento
5.
Microcirculation ; 31(2): e12840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38082450

RESUMO

INTRODUCTION: Age-related blood-brain barrier (BBB) disruption, cerebromicrovascular senescence, and microvascular rarefaction substantially contribute to the pathogenesis of vascular cognitive impairment (VCI) and Alzheimer's disease (AD). Previous studies established a causal link between age-related decline in circulating levels of insulin-like growth factor-1 (IGF-1), cerebromicrovascular dysfunction, and cognitive decline. The aim of our study was to determine the effect of IGF-1 signaling on senescence, BBB permeability, and vascular density in middle-age and old brains. METHODS: Accelerated endothelial senescence was assessed in senescence reporter mice (VE-Cadherin-CreERT2 /Igf1rfl/fl × p16-3MR) using flow cytometry. To determine the functional consequences of impaired IGF-1 input to cerebromicrovascular endothelial cells, BBB integrity and capillary density were studied in mice with endothelium-specific knockout of IGF1R (VE-Cadherin-CreERT2 /Igf1rfl/fl ) using intravital two-photon microscopy. RESULTS: In VE-Cadherin-CreERT2 /Igf1rfl/fl mice: (1) there was an increased presence of senescent endothelial cells; (2) cumulative permeability of the microvessels to fluorescent tracers of different molecular weights (0.3-40 kDa) is significantly increased, as compared to that of control mice, whereas decline in cortical capillary density does not reach statistical significance. CONCLUSIONS: These findings support the notion that IGF-1 signaling plays a crucial role in preserving a youthful cerebromicrovascular endothelial phenotype and maintaining the integrity of the BBB.


Assuntos
Barreira Hematoencefálica , Fator de Crescimento Insulin-Like I , Animais , Camundongos , Barreira Hematoencefálica/patologia , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Peptídeos Semelhantes à Insulina , Células Endoteliais/metabolismo , Envelhecimento/patologia , Encéfalo/irrigação sanguínea , Fenótipo , Endotélio , Senescência Celular
6.
Geroscience ; 46(1): 21-37, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044400

RESUMO

Emerging evidence from both clinical and preclinical studies underscores the role of aging in potentiating the detrimental effects of hypertension on cerebral microhemorrhages (CMHs, or cerebral microbleeds). CMHs progressively impair neuronal function and contribute to the development of vascular cognitive impairment and dementia. There is growing evidence showing accumulation of senescent cells within the cerebral microvasculature during aging, which detrimentally affects cerebromicrovascular function and overall brain health. We postulated that this build-up of senescent cells renders the aged cerebral microvasculature more vulnerable, and consequently, more susceptible to CMHs. To investigate the role of cellular senescence in CMHs' pathogenesis, we subjected aged mice, both with and without pre-treatment with the senolytic agent ABT263/Navitoclax, and young control mice to hypertension via angiotensin-II and L-NAME administration. The aged cohort exhibited a markedly earlier onset, heightened incidence, and exacerbated neurological consequences of CMHs compared to their younger counterparts. This was evidenced through neurological examinations, gait analysis, and histological assessments of CMHs in brain sections. Notably, the senolytic pre-treatment wielded considerable cerebromicrovascular protection, effectively delaying the onset, mitigating the incidence, and diminishing the severity of CMHs. These findings hint at the potential of senolytic interventions as a viable therapeutic avenue to preempt or alleviate the consequences of CMHs linked to aging, by counteracting the deleterious effects of senescence on brain microvasculature.


Assuntos
Compostos de Anilina , Hipertensão , Senoterapia , Sulfonamidas , Humanos , Camundongos , Animais , Idoso , Envelhecimento/patologia , Senescência Celular
7.
Geroscience ; 46(1): 531-541, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953375

RESUMO

Whole brain irradiation (WBI), also known as whole brain radiation therapy (WBRT), is a well-established treatment for multiple brain metastases and as a preventive measure to reduce the risk of recurrence after surgical removal of a cerebral metastasis. However, WBI has been found to lead to a gradual decline in neurocognitive function in approximately 50% of patients who survive the treatment, significantly impacting their overall quality of life. Recent preclinical investigations have shed light on the underlying mechanisms of this adverse effect, revealing a complex cerebrovascular injury that involves the induction of cellular senescence in various components of the neurovascular unit, including endothelial cells. The emergence of cellular senescence following WBI has been implicated in the disruption of the blood-brain barrier and impairment of neurovascular coupling responses following irradiation. Building upon these findings, the present study aims to test the hypothesis that WBI-induced endothelial injury promotes endothelial dysfunction, which mimics the aging phenotype. To investigate this hypothesis, we employed a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks) on young mice. Both the WBI-treated and control mice were fitted with a cranial window, enabling the assessment of microvascular endothelial function. In order to evaluate the endothelium-dependent, NO-mediated cerebral blood flow (CBF) responses, we topically administered acetylcholine and ATP, and measured the resulting changes using laser Doppler flowmetry. We found that the increases in regional CBF induced by acetylcholine and ATP were significantly diminished in mice subjected to WBI. These findings provide additional preclinical evidence supporting the notion that WBI induces dysfunction in cerebrovascular endothelial cells, which in turn likely contributes to the detrimental long-term effects of the treatment. This endothelial dysfunction resembles an accelerated aging phenotype in the cerebrovascular system and is likely causally linked to the development of cognitive impairment. By integrating these findings with our previous results, we have deepened our understanding of the lasting consequences of WBI. Moreover, our study underscores the critical role of cerebromicrovascular health in safeguarding cognitive function over the long term. This enhanced understanding highlights the importance of prioritizing cerebromicrovascular health in the context of preserving cognitive abilities.


Assuntos
Acetilcolina , Células Endoteliais , Humanos , Animais , Camundongos , Qualidade de Vida , Encéfalo , Trifosfato de Adenosina
8.
Adv Sci (Weinh) ; 11(10): e2303516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155460

RESUMO

Impaired cerebrovascular function contributes to the genesis of age-related cognitive decline. In this study, the hypothesis is tested that impairments in neurovascular coupling (NVC) responses and brain network function predict cognitive dysfunction in older adults. Cerebromicrovascular and working memory function of healthy young (n = 21, 33.2±7.0 years) and aged (n = 30, 75.9±6.9 years) participants are assessed. To determine NVC responses and functional connectivity (FC) during a working memory (n-back) paradigm, oxy- and deoxyhemoglobin concentration changes from the frontal cortex using functional near-infrared spectroscopy are recorded. NVC responses are significantly impaired during the 2-back task in aged participants, while the frontal networks are characterized by higher local and global connection strength, and dynamic FC (p < 0.05). Both impaired NVC and increased FC correlate with age-related decline in accuracy during the 2-back task. These findings suggest that task-related brain states in older adults require stronger functional connections to compensate for the attenuated NVC responses associated with working memory load.


Assuntos
Disfunção Cognitiva , Acoplamento Neurovascular , Humanos , Idoso , Acoplamento Neurovascular/fisiologia , Encéfalo/fisiologia , Lobo Frontal
9.
Geroscience ; 46(1): 327-347, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123890

RESUMO

Age-related impairment of neurovascular coupling (NVC; "functional hyperemia") is a critical factor in the development of vascular cognitive impairment (VCI). Recent geroscience research indicates that cell-autonomous mechanisms alone cannot explain all aspects of neurovascular aging. Circulating factors derived from other organs, including pro-geronic factors (increased with age and detrimental to vascular homeostasis) and anti-geronic factors (preventing cellular aging phenotypes and declining with age), are thought to orchestrate cellular aging processes. This study aimed to investigate the influence of age-related changes in circulating factors on neurovascular aging. Heterochronic parabiosis was utilized to assess how exposure to young or old systemic environments could modulate neurovascular aging. Results demonstrated a significant decline in NVC responses in aged mice subjected to isochronic parabiosis (20-month-old C57BL/6 mice [A-(A)]; 6 weeks of parabiosis) when compared to young isochronic parabionts (6-month-old, [Y-(Y)]). However, exposure to young blood from parabionts significantly improved NVC in aged heterochronic parabionts [A-(Y)]. Conversely, young mice exposed to old blood from aged parabionts exhibited impaired NVC responses [Y-(A)]. In conclusion, even a brief exposure to a youthful humoral environment can mitigate neurovascular aging phenotypes, rejuvenating NVC responses. Conversely, short-term exposure to an aged humoral milieu in young mice accelerates the acquisition of neurovascular aging traits. These findings highlight the plasticity of neurovascular aging and suggest the presence of circulating anti-geronic factors capable of rejuvenating the aging cerebral microcirculation. Further research is needed to explore whether young blood factors can extend their rejuvenating effects to address other age-related cerebromicrovascular pathologies, such as blood-brain barrier integrity.


Assuntos
Acoplamento Neurovascular , Camundongos , Animais , Acoplamento Neurovascular/fisiologia , Rejuvenescimento , Camundongos Endogâmicos C57BL , Envelhecimento/fisiologia , Parabiose
10.
Brain Res ; 1818: 148517, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557976

RESUMO

Microglia cells, the immune cells residing in the brain, express immune regulatory molecules that have a central role in the manifestation of age-related brain characteristics. Our hypothesis suggests that galectin-1, an anti-inflammatory member of the beta-galactoside-binding lectin family, regulates microglia and neuroinflammation in the aging brain. Through our in-silico analysis, we discovered a subcluster of microglia in the aged mouse brain that exhibited increased expression of galectin-1 mRNA. In our Western blotting experiments, we observed a decrease in galectin-1 protein content in our rat primary cortical cultures over time. Additionally, we found that the presence of lipopolysaccharide, an immune activator, significantly increased the expression of galectin-1 protein in microglial cells. Utilizing flow cytometry, we determined that a portion of the galectin-1 protein was localized on the surface of the microglial cells. As cultivation time increased, we observed a decrease in the expression of activation-coupled molecules in microglial cells, indicating cellular exhaustion. In our mixed rat primary cortical cell cultures, we noted a transition of amoeboid microglial cells labeled with OX42(CD11b/c) to a ramified, branched phenotype during extended cultivation, accompanied by a complete disappearance of galectin-1 expression. By analyzing the transcriptome of a distinct microglial subpopulation in an animal model of aging, we established a correlation between chronological aging and galectin-1 expression. Furthermore, our in vitro study demonstrated that galectin-1 expression is associated with the functional activation state of microglial cells exhibiting specific amoeboid morphological characteristics. Based on our findings, we identify galectin-1 as a marker for microglia activation in the context of aging.


Assuntos
Envelhecimento , Biomarcadores , Encéfalo , Galectina 1 , Microglia , Animais , Camundongos , Ratos , Envelhecimento/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Galectina 1/metabolismo , Microglia/metabolismo
11.
Geroscience ; 45(5): 2983-3002, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37642933

RESUMO

Whole brain irradiation (WBI), a commonly employed therapy for multiple brain metastases and as a prophylactic measure after cerebral metastasis resection, is associated with a progressive decline in neurocognitive function, significantly impacting the quality of life for approximately half of the surviving patients. Recent preclinical investigations have shed light on the multifaceted cerebrovascular injury mechanisms underlying this side effect of WBI. In this study, we aimed to test the hypothesis that WBI induces endothelial senescence, contributing to chronic disruption of the blood-brain barrier (BBB) and microvascular rarefaction. To accomplish this, we utilized transgenic p16-3MR mice, which enable the identification and selective elimination of senescent cells. These mice were subjected to a clinically relevant fractionated WBI protocol (5 Gy twice weekly for 4 weeks), and cranial windows were applied to both WBI-treated and control mice. Quantitative assessment of BBB permeability and capillary density was performed using two-photon microscopy at the 6-month post-irradiation time point. The presence of senescent microvascular endothelial cells was assessed by imaging flow cytometry, immunolabeling, and single-cell RNA-sequencing (scRNA-seq). WBI induced endothelial senescence, which associated with chronic BBB disruption and a trend for decreased microvascular density in the mouse cortex. In order to investigate the cause-and-effect relationship between WBI-induced senescence and microvascular injury, senescent cells were selectively removed from animals subjected to WBI treatment using Navitoclax/ABT263, a well-known senolytic drug. This intervention was carried out at the 3-month post-WBI time point. In WBI-treated mice, Navitoclax/ABT263 effectively eliminated senescent endothelial cells, which was associated with decreased BBB permeability and a trend for increased cortical capillarization. Our findings provide additional preclinical evidence that senolytic treatment approaches may be developed for prevention of the side effects of WBI.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Camundongos , Animais , Qualidade de Vida , Senoterapia , Encéfalo/irrigação sanguínea , Senescência Celular
12.
Geroscience ; 45(5): 2851-2872, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37338779

RESUMO

Cerebral microhemorrhages (CMHs, microbleeds), a manifestation of age-related cerebral small vessel disease, contribute to the pathogenesis of cognitive decline and dementia in older adults. Histological studies have revealed that CMHs exhibit distinct morphologies, which may be attributed to differences in intravascular pressure and the size of the vessels of origin. Our study aimed to establish a direct relationship between the size/morphology of CMHs and the size/anatomy of the microvessel of origin. To achieve this goal, we adapted and optimized intravital two-photon microscopy-based imaging methods to monitor the development of CMHs in mice equipped with a chronic cranial window upon high-energy laser light-induced photodisruption of a targeted cortical arteriole, capillary, or venule. We assessed the time course of extravasation of fluorescently labeled blood and determined the morphology and size/volume of the induced CMHs. Our findings reveal striking similarities between the bleed morphologies observed in hypertension-induced CMHs in models of aging and those originating from different targeted vessels via multiphoton laser ablation. Arteriolar bleeds, which are larger (> 100 µm) and more widely dispersed, are distinguished from venular bleeds, which are smaller and exhibit a distinct diffuse morphology. Capillary bleeds are circular and smaller (< 10 µm) in size. Our study supports the concept that CMHs can occur at any location in the vascular tree, and that each type of vessel produces microbleeds with a distinct morphology. Development of CMHs resulted in immediate constriction of capillaries, likely due to pericyte activation and constriction of precapillary arterioles. Additionally, tissue displacement observed in association with arteriolar CMHs suggests that they can affect an area with a radius of ~ 50 µm to ~ 100 µm, creating an area at risk for ischemia. Longitudinal imaging of CMHs allowed us to visualize reactive astrocytosis and bleed resolution during a 30-day period. Our study provides new insights into the development and morphology of CMHs, highlighting the potential clinical implications of differentiating between the types of vessels involved in the pathogenesis of CMHs. This information may help in the development of targeted interventions aimed at reducing the risk of cerebral small vessel disease-related cognitive decline and dementia in older adults.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Demência , Camundongos , Animais , Arteríolas/diagnóstico por imagem , Vênulas , Capilares/diagnóstico por imagem , Microscopia , Hemorragia Cerebral/etiologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/complicações , Demência/complicações
13.
Aging Cell ; 22(7): e13832, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37243381

RESUMO

Chemotherapy-induced cognitive impairment ("chemobrain") is a frequent side-effect in cancer survivors treated with paclitaxel (PTX). The mechanisms responsible for PTX-induced cognitive impairment remain obscure, and there are no effective treatments or prevention strategies. Here, we test the hypothesis that PTX induces endothelial senescence, which impairs microvascular function and contributes to the genesis of cognitive decline. We treated transgenic p16-3MR mice, which allows the detection and selective elimination of senescent cells, with PTX (5 mg/kg/day, 2 cycles; 5 days/cycle). PTX-treated and control mice were tested for spatial memory performance, neurovascular coupling (NVC) responses (whisker-stimulation-induced increases in cerebral blood flow), microvascular density, blood-brain barrier (BBB) permeability and the presence of senescent endothelial cells (by flow cytometry and single-cell transcriptomics) at 6 months post-treatment. PTX induced senescence in endothelial cells, which associated with microvascular rarefaction, NVC dysfunction, BBB disruption, neuroinflammation, and impaired performance on cognitive tasks. To establish a causal relationship between PTX-induced senescence and impaired microvascular functions, senescent cells were depleted from PTX-treated animals (at 3 months post-treatment) by genetic (ganciclovir) or pharmacological (treatment with the senolytic drug ABT263/Navitoclax) means. In PTX treated mice, both treatments effectively eliminated senescent endothelial cells, rescued endothelium-mediated NVC responses and BBB integrity, increased capillarization and improved cognitive performance. Our findings suggest that senolytic treatments can be a promising strategy for preventing chemotherapy-induced cognitive impairment.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Disfunção Cognitiva , Camundongos , Animais , Células Endoteliais , Paclitaxel/efeitos adversos , Senoterapia , Modelos Animais de Doenças
14.
Front Endocrinol (Lausanne) ; 14: 1087053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755922

RESUMO

Age-related cerebrovascular pathologies, ranging from cerebromicrovascular functional and structural alterations to large vessel atherosclerosis, promote the genesis of vascular cognitive impairment and dementia (VCID) and exacerbate Alzheimer's disease. Recent advances in geroscience, including results from studies on heterochronic parabiosis models, reinforce the hypothesis that cell non-autonomous mechanisms play a key role in regulating cerebrovascular aging processes. Growth hormone (GH) and insulin-like growth factor 1 (IGF-1) exert multifaceted vasoprotective effects and production of both hormones is significantly reduced in aging. This brief overview focuses on the role of age-related GH/IGF-1 deficiency in the development of cerebrovascular pathologies and VCID. It explores the mechanistic links among alterations in the somatotropic axis, specific macrovascular and microvascular pathologies (including capillary rarefaction, microhemorrhages, impaired endothelial regulation of cerebral blood flow, disruption of the blood brain barrier, decreased neurovascular coupling, and atherogenesis) and cognitive impairment. Improved understanding of cell non-autonomous mechanisms of vascular aging is crucial to identify targets for intervention to promote cerebrovascular and brain health in older adults.


Assuntos
Disfunção Cognitiva , Demência Vascular , Humanos , Idoso , Fator de Crescimento Insulin-Like I/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Circulação Cerebrovascular/fisiologia
15.
Front Aging Neurosci ; 14: 1052451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466602

RESUMO

Introduction: Advanced methods of gait research, including approaches to quantify variability, and orderliness/regularity/predictability, are increasingly used to identify patients at risk for the development of cognitive impairment. Cerebral small vessel disease (CSVD) is highly prevalent in older adults and is known to contribute to the development of vascular cognitive impairment and dementia (VCID). Studies in preclinical models demonstrate that subclinical alterations precede CSVD-related cognitive impairment in gait coordination. In humans, CSVD also associates with gait abnormalities. The present study was designed to test the hypothesis that increased gait variability and gait asymmetry predict a decline in cognitive performance in older adults with CSVD. Methods: To test this hypothesis, we compared cognitive performance and gait function in patients with CSVD (age: 69.8 ± 5.3 years; n = 11) and age- and sex-matched control participants (age: 70.7 ± 5.8 years; n = 11). Based on imaging findings, patients with CSVD were identified [presence of white matter hyperintensities plus silent brain infarcts and/or microhemorrhages on magnetic resonance imaging (MRI) assessment]. Cognitive performance was assessed using the Cambridge Neuropsychological Test Automated Battery (CANTAB). Gait parameters were measured during the single and dual tasks, during which participants, in addition to the motor task, completed a series of mental arithmetic calculations. Spatial and temporal parameters of gait variability, symmetry, and permutation entropy were determined using a pressure-sensitive gait mat during single and dual cognitive task conditions. Results: Patients with CSVD exhibited lower performance in a visual learning test (p = 0.030) and in a sustained attention test (p = 0.007). CSVD also affected step time variability (p = 0.009) and step length variability (p = 0.017). Step lengths of CSVD participants were more asymmetric (p = 0.043) than that of controls, while the two groups were statistically similar regarding step time symmetry and entropy of step time and length. Gait variability was inversely associated with sustained attention, especially among CSVD patients, and this relationship was significantly different between the two groups. The association of sustained attention with gait symmetry was also significantly different between the two groups. Discussion: Our findings provide additional evidence in support of the concept that increased gait variability and asymmetry may predict cognitive impairment in older adults with CSVD.

16.
Am J Physiol Heart Circ Physiol ; 322(6): H924-H935, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35333116

RESUMO

Peripheral artery disease (PAD) is a vascular pathology with high prevalence among the aging population. PAD is associated with decreased cognitive performance, but the underlying mechanisms remain obscure. Normal brain function critically depends on an adequate adjustment of cerebral blood supply to match the needs of active brain regions via neurovascular coupling (NVC). NVC responses depend on healthy microvascular endothelial function. PAD is associated with significant endothelial dysfunction in peripheral arteries, but its effect on NVC responses has not been investigated. This study was designed to test the hypothesis that NVC and peripheral microvascular endothelial function are impaired in PAD. We enrolled 11 symptomatic patients with PAD and 11 age- and sex-matched controls. Participants were evaluated for cognitive performance using the Cambridge Neuropsychological Test Automated Battery and functional near-infrared spectroscopy to assess NVC responses during the cognitive n-back task. Peripheral microvascular endothelial function was evaluated using laser speckle contrast imaging. We found that cognitive performance was compromised in patients with PAD, evidenced by reduced visual memory, short-term memory, and sustained attention. We found that NVC responses and peripheral microvascular endothelial function were significantly impaired in patients with PAD. A positive correlation was observed between microvascular endothelial function, NVC responses, and cognitive performance in the study participants. Our findings support the concept that microvascular endothelial dysfunction and neurovascular uncoupling contribute to the genesis of cognitive impairment in older PAD patients with claudication. Longitudinal studies are warranted to test whether the targeted improvement of NVC responses can prevent or delay the onset of PAD-associated cognitive decline.NEW & NOTEWORTHY Peripheral artery disease (PAD) was associated with significantly decreased cognitive performance, impaired neurovascular coupling (NVC) responses in the prefrontal cortex (PFC), left and right dorsolateral prefrontal cortices (LDLPFC and RDLPFC), and impaired peripheral microvascular endothelial function. A positive correlation between microvascular endothelial function, NVC responses, and cognitive performance may suggest that PAD-related cognitive decrement is mechanistically linked, at least in part, to generalized microvascular endothelial dysfunction and subsequent impairment of NVC responses.


Assuntos
Disfunção Cognitiva , Acoplamento Neurovascular , Doença Arterial Periférica , Idoso , Envelhecimento/fisiologia , Arteríolas , Circulação Cerebrovascular/fisiologia , Humanos , Acoplamento Neurovascular/fisiologia
17.
Front Aging Neurosci ; 14: 788296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356301

RESUMO

Age-related cerebrovascular defects contribute to vascular cognitive impairment and dementia (VCID) as well as other forms of dementia. There has been great interest in developing biomarkers and other tools for studying cerebrovascular disease using more easily accessible tissues outside the brain such as the retina. Decreased circulating insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the development of cerebrovascular impairment, a hypothesis that has been supported by the use of IGF-1 deficient animal models. Here we evaluate vascular and other retinal phenotypes in animals with circulating IGF-1 deficiency and ask whether the retina mimics common age-related vascular changes in the brain such as the development of microhemorrhages. Using a hypertension-induced model, we confirm that IGF-1 deficient mice exhibited worsened microhemorrhages than controls. The retinas of IGF-1 deficient animals do not exhibit microhemorrhages but do exhibit signs of vascular damage and retinal stress such as patterns of vascular constriction and Müller cell activation. These signs of retinal stress are not accompanied by retinal degeneration or impaired neuronal function. These data suggest that the role of IGF-1 in the retina is complex, and while IGF-1 deficiency leads to vascular defects in both the brain and the retina, not all brain pathologies are evident in the retina.

18.
Geroscience ; 44(2): 953-981, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35124764

RESUMO

Vascular aging has a central role in the pathogenesis of cardiovascular diseases contributing to increased mortality of older adults. There is increasing evidence that, in addition to the documented role of cell-autonomous mechanisms of aging, cell-nonautonomous mechanisms also play a critical role in the regulation of vascular aging processes. Our recent transcriptomic studies (Kiss T. et al. Geroscience. 2020;42(2):727-748) demonstrated that circulating anti-geronic factors from young blood promote vascular rejuvenation in aged mice. The present study was designed to expand upon the results of this study by testing the hypothesis that circulating pro-geronic factors also contribute to the genesis of vascular aging phenotypes. To test this hypothesis, through heterochronic parabiosis, we determined the extent to which shifts in the vascular transcriptome (RNA-seq) are modulated by the old systemic environment. We reanalyzed existing RNA-seq data, comparing the transcriptome in the aorta arch samples isolated from isochronic parabiont aged (20-month-old) C57BL/6 mice [A-(A); parabiosis for 8 weeks] and young isochronic parabiont (6-month-old) mice [Y-(Y)] and also assessing transcriptomic changes in the aortic arch in young (6-month-old) parabiont mice [Y-(A); heterochronic parabiosis for 8 weeks] induced by the presence of old blood derived from aged (20-month-old) parabionts. We identified 528 concordant genes whose expression levels differed in the aged phenotype and were shifted towards the aged phenotype by the presence of old blood in young Y-(A) animals. Among them, the expression of 221 concordant genes was unaffected by the presence of young blood in A-(Y) mice. GO enrichment analysis suggests that old blood-regulated genes may contribute to pathologic vascular remodeling. IPA Upstream Regulator analysis (performed to identify upstream transcriptional regulators that may contribute to the observed transcriptomic changes) suggests that the mechanism of action of pro-geronic factors present in old blood may include inhibition of pathways mediated by SRF (serum response factor), insulin-like growth factor-1 (IGF-1) and VEGF-A. In conclusion, relatively short-term exposure to old blood can accelerate vascular aging processes. Our findings provide additional evidence supporting the significant plasticity of vascular aging and the existence of circulating pro-geronic factors mediating pathological remodeling of the vascular smooth muscle cells and the extracellular matrix.


Assuntos
Parabiose , Transcriptoma , Envelhecimento/genética , Envelhecimento/patologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso
19.
Geroscience ; 44(2): 661-681, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098444

RESUMO

There is strong evidence that aging is associated with an increased presence of senescent cells in the brain. The finding that treatment with senolytic drugs improves cognitive performance of aged laboratory mice suggests that increased cellular senescence is causally linked to age-related cognitive decline. The relationship between senescent cells and their relative locations within the brain is critical to understanding the pathology of age-related cognitive decline and dementia. To assess spatial distribution of cellular senescence in the aged mouse brain, spatially resolved whole transcriptome mRNA expression was analyzed in sections of brains derived from young (3 months old) and aged (28 months old) C57BL/6 mice while capturing histological information in the same tissue section. Using this spatial transcriptomics (ST)-based method, microdomains containing senescent cells were identified on the basis of their senescence-related gene expression profiles (i.e., expression of the senescence marker cyclin-dependent kinase inhibitor p16INK4A encoded by the Cdkn2a gene) and were mapped to different anatomical brain regions. We confirmed that brain aging is associated with increased cellular senescence in the white matter, the hippocampi and the cortical grey matter. Transcriptional analysis of the senescent cell-containing ST spots shows that presence of senescent cells is associated with a gene expression signature suggestive of neuroinflammation. GO enrichment analysis of differentially expressed genes in the outer region of senescent cell-containing ST spots ("neighboring ST spots") also identified functions related to microglia activation and neuroinflammation. In conclusion, senescent cells accumulate with age in the white matter, the hippocampi and cortical grey matter and likely contribute to the genesis of inflammatory foci in a paracrine manner.


Assuntos
Transcriptoma , Substância Branca , Animais , Encéfalo , Senescência Celular/genética , Substância Cinzenta , Camundongos , Camundongos Endogâmicos C57BL
20.
Geroscience ; 44(2): 805-816, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34989944

RESUMO

Cerebral microhemorrhages (CMHs; microbleeds), which are small focal intracerebral hemorrhages, importantly contribute to the pathogenesis of cognitive decline and dementia in older adults. Although recently it has been increasingly recognized that the venous side of the cerebral circulation likely plays a fundamental role in the pathogenesis of a wide spectrum of cerebrovascular and brain disorders, its role in the pathogenesis of CMHs has never been studied. The present study was designed to experimentally test the hypothesis that venous congestion can exacerbate the genesis of CMHs. Increased cerebral venous pressure was induced by internal and external jugular vein ligation (JVL) in C57BL/6 mice in which systemic hypertension was induced by treatment with angiotensin II plus L-NAME. Histological analysis (diaminobenzidine staining) showed that mice with JVL developed multiple CMHs. CMHs in mice with JVL were often localized adjacent to veins and venules and their morphology was consistent with venous origin of the bleeds. In brains of mice with JVL, a higher total count of CMHs was observed compared to control mice. CMHs were distributed widely in the brain of mice with JVL, including the cortical gray matter, brain stem, the basal ganglia, subcortical white matter, cerebellum, and the hippocampi. In mice with JVL, there were more CMHs predominantly in cerebral cortex, brain stem, and cerebellum than in control mice. CMH burden, defined as total CMH volume, also significantly increased in mice with JVL. Thus, cerebral venous congestion can exacerbate CMHs. These observations have relevance to the pathogenesis of cognitive impairment associated with right heart failure as well as elevated cerebral venous pressure due to jugular venous reflux in older adults.


Assuntos
Disfunção Cognitiva , Hiperemia , Animais , Hemorragia Cerebral/etiologia , Circulação Cerebrovascular , Disfunção Cognitiva/etiologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA